Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Optimization of Classifiers using Genetic Programming. Developing Optimal Composite Classifiers using Genetic Programming for Pattern Classification problems

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Abdul Majid
ISBN: 9783659934926
Год издания: 2016
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 160
Издательство: LAP LAMBERT Academic Publishing
Цена: 38860 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 161692
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: The material in the book is useful for the beginners, graduate students and teachers working in the fields of pattern recognition, image processing, machine learning, and computational intelligence. This book is also fruitful for scientists, researchers, and engineers who want to develop their improved performance classification models for pattern recognition / classification problems. This book focuses the development of various classification models using genetic programming (GP) optimization. This technique is employed in various stages of the pattern classification. The success of classification system highly depends on the improvement of its classification stage. The book has investigated the potential of genetic programming search space to optimize the performance of various machine-learning approaches including linear, support vector machines, statistical, and nearest neighbor. The main advantage of GP technique is that,during training, it automatically selection suitable component classifiers for optimal combination. In the book, the improved performance of composite classifiers is evaluated for various pattern classification problems.
Ключевые слова: combining classifiers, Genetic Programming, Machine Learning, Supervised Learning, pattern classification