Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Big Data Exclusions and Disparate Impact. Investigating the exclusionary dynamics of the Big Data phenomenon
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Charly Gordon
ISBN: 9783659955884
Год издания: 2016
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 56
Издательство: LAP LAMBERT Academic Publishing
Цена: 22726 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: There have been seemingly endless hopes and claims made about the potential benefits of Big Data for society. The phenomenon has spurred the publication of countless media reports and fostered significant academic research in a variety of fields. However, despite this abundance of literature, the Big Data phenomenon suffers from considerable research gaps. Specifically, there has recently been a growing interest in the social consequences of Big Data with particular attention given to the phenomenon’s potential to aggravate structural inequalities. This study offers an inquiry into the phenomenon’s impact in terms of social exclusion and its potential for harmful discrimination. By conducting semi-structured elite interviews, this paper seeks to assess the apparent contradiction between Big Data’s dynamics of exclusion and the dominant conceptual projection of Big Data, which often portrays the phenomenon as inclusive and beneficial for society at large. To this effect, it seeks to investigate how those who hold a privileged position in the field of Big Data appraise the phenomenon’s exclusionary dynamics as well as critically assess their recommendations.
Ключевые слова: Big Data, Discrimination, predictive analytics, digital data, inequalities, algorithmic accountability, data discrimination, disparate impact