Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Automated detection of new MS lesions in longitudinal MRI. Automated detection of new multiple sclerosis lesions in longitudinal magnetic resonance imaging
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Onur Ganiler
ISBN: 9783659684067
Год издания: 2016
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 196
Издательство: LAP LAMBERT Academic Publishing
Цена: 40139 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 166714
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: This book deals with the detection of new multiple sclerosis (MS) lesions in longitudinal brain magnetic resonance (MR) imaging. The detection and quantification of new lesions are crucial to follow-up MS patients. Moreover, the manual detection of these new lesions is not only time-consuming, but is also prone to intra- and inter-observer variability. Therefore, the development of automated techniques for the detection MS lesions is a major challenge. After a thorough analysis of the state-of-the art in MS lesion detection approaches, we present a new classification of techniques pointing out their main strengths and weaknesses. A complementary quantitative evaluation of some of the most remarkable methods in the literature is also provided. Subsequently, we present a new proposal based on a change detection approach, which combines various characteristics of different MR image modalities. For this purpose, including the baseline and follow-up images, we join both results obtained from PD-w and T2-w images in a supervised and an unsupervised manner. The evaluation, carried out in a quantitative and qualitative manner.
Ключевые слова: Computer Vision, image processing, Machine Learning, Brain Magnetic Resonance Imaging (MRI), Multiple Sclerosis (MS) Lesions