Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Early Brain Tumor Detection - ANN Approaches.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: G. Vijay Kumar and G.V. Raju
ISBN: 9783330028173
Год издания: 2017
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 200
Издательство: LAP LAMBERT Academic Publishing
Цена: 33989 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Cancer is a genetic and vital disease. In last decade, many important genes responsible for the genesis of various cancers have been discovered, their mutations precisely identified, and the pathways through which they act are been characterized. Mammography is the most common technique used by radiologists in the screening and diagnosis of the cancer cells. Although it is seen as the best examination technique early detection of cancer cells presence a low accuracy in early prediction. Their interpretation requires skill and experience for proper diagnosis. Cancer detection is a complex diagnosis process as the point of origin in any part of the human body is still unknown. Brain Tumor detection is the most complicated task in all the existing different types of cancer, where a brief study is presented below.In all the studies mentioned above, the basic features of the Brain in all the views were assumed to represent the MRI images in tumor detection. The results were found to be superior in detection only in the advanced stages and profound knowledge was not sufficient to redefine the status of the tumor as benign or malign. All the images were considered in frequency domain.
Ключевые слова: artificial neural networks, Blind Source Separation, Brain Tumor, Wavelet Methods