Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Algebraic aspects of compatible poisson structures. A study on algebraic properties of compatible Poisson brackets that preserved under bi-Hamiltonian system
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Pumei Zhang
ISBN: 9783330651470
Год издания: 2017
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 164
Издательство: Scholars' Press
Цена: 38519 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The book consists of three chapters. In chapter I, we introduce some notions and definitions for basic concepts of the theory of integrable bi-Hamiltonian systems. Several open problems related to our main results are also mentioned in this part. In chapter II. We applied the so-called Jordan-Kronecker decomposition theorem to study algebraic properties of the pencil generated by two constant compatible Poisson structures on a vector space. In particular, we study the linear automorphism group that preserves the pencil. In classical symplectic geometry, many fundamental results are based on the symplectic group, which preserves the symplectic structure. Therefore in the theory of bi-Hamiltonian structures, we hope the linear automorphism group also plays a fundamental role. In chapter III, We describe the Lie group of linear automorphisms of the pencil, and obtain an explicit formula for the dimension of the Lie group and discuss some other algebraic properties such as solvability and Levi-Malcev decomposition.
Ключевые слова: compatible Poisson brackets, Jordan-Kronecker decomposition, pencils of skew symmetric matrices, bi-Hamiltonian systems