Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Ground Water Modeling. Using Artificial Neural Network
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Archana K. Chowdhary and Keerti K. Chowdhary
ISBN: 9783330319806
Год издания: 2017
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 80
Издательство: LAP LAMBERT Academic Publishing
Цена: 17236 тг
Положить в корзину
Позиции в рубрикаторе
Сферы деятельности:Код товара: 173358
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The world’s water resources are unequally distributed both in time and space. Until recently water resource management focused mainly on delivering water when and where it was required, a supply side or fragmental approach. Now, it is apparent that water availability is dwindling due to both population growth and increased per capita water use causing often irreparable damage to environment. Surface water availability shows temporal fluctuations in terms of floods and droughts and ground water availability shows mainly spatial variability in terms of quality and quantity due to the hydrologic setting, boundary conditions and aquifer properties. To face this challenge a new holistic system approach, relying on integrated or conjunctive use of surface and ground water resource is needed to overcome the current fragmental management of water. Ground Water and aquifer systems in a basin are complex and dynamic. Any change in the operation of one part is reflected in more or less in substantial change in other parts. The objective of this work is to predict the response of the system in the form of Ground Water heads, which is possible only if the hydrologic conditions are defined.
Ключевые слова: artificial neural network, fluctuations, Ground Water Modeling, Ground Water Recharge Assessment