Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Solution of Fuzzy Problems Under Generalized H-Derivation. Artificial Neural Network For Solving Fuzzy Differential Equations Under Generalized H- Derivation

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Mazin Suhhiem
ISBN: 9783330341937
Год издания: 2017
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 60
Издательство: LAP LAMBERT Academic Publishing
Цена: 21272 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 175669
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Nowadays , fuzzy differential equation FDE is a popular topic studied by many researchers since it is utilized widely for the purpose of modeling problems in science and engineering . Most of the practical problems require the solution of FDE which satisfies fuzzy initial or fuzzy boundary conditions , therefore, the fuzzy problem should be solved . However , many FDE could not be solved exactly , sometimes it is even impossible to find their analytical solutions. Thus , considering their approximate solutions is becoming more important . In this work, for solving FDE Under Generalized H – Derivation , we present modified numerical method which relies on the function approximation capabilities of artificial neural network (ANN) and results in the construction of a solution written in a differentiable, closed analytic form. This form employs ANN as the basic approximation element, whose parameters weights and biases are adjusted to minimize an appropriate error function. This method can result in improved numerical methods for solving FDE .
Ключевые слова: Fuzzy Differential Equations, Artificial Neural Network, Generalized H – Derivation, Error Function, Trial Solution, BFGS Quasi-Newton Method