Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Analysis and Forecasting of Financial Time Series Using R. Models and Applications
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Jaydip Sen and Tamal Datta Chaudhuri
ISBN: 9783330653863
Год издания: 2017
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 264
Издательство: Scholars' Press
Цена: 51251 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Analysis and prediction of stock market time series data have attracted considerable interest from the research community over the last decade. Rapid development and evolution of sophisticated algorithms for statistical analysis of time series data and availability of high-performance hardware have made it possible to process and analyze high volume stock market time series data effectively, in real-time. Among many other important characteristics and behavior of such data, forecasting is an area which has witnessed considerable focus. This book presents some of the state of the art research work in the field of time series analysis and forecasting. Rich libraries of R software have been used for time series decomposition and for designing of efficient forecasting approaches. It will surely be a valuable source of knowledge for researchers, engineers, practitioners, analysts, data scientists and graduate and doctoral students who are working in the field of econometrics, statistical modeling, time series analysis, forecasting and financial analytics. It will also be useful for faculty members of graduate schools and universities.
Ключевые слова: ARIMA, Decomposition, Mutual Fund, Neural Network, seasonal, Trend, Time Series, Random, Holt Winters Forecasting model, R Programming Language, Auto Sector Index, Small Cap Sector Index, Consumer Durable Sector Index, IT Sector Index, Capital Goods Sector Index, Dow Jones Industrial Average (DJIA) Index, NIFTY Index, Foreign Exchange, Heath Care Sector Index, FMCG Sector Index, Linear Regression, Root Mean Square Error.