Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Causal Nexus Between International Tourism and Economic Development. A Bootstrap Panel Causality Test
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Tsung-Pao Wu and Hung-Che Wu
ISBN: 9786202021876
Год издания: 2017
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 52
Издательство: LAP LAMBERT Academic Publishing
Цена: 22584 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: What are the influences of international tourism receipts on economic development? How are international tourism receipts related to economic development? In this book, we stress that previous studies have focused on one or few regions. In this work, we employ a bootstrap panel Granger causality test to examine the causal relationship between international tourism receipts and economic growth in China’s 31 major regions for the period from 1995 to 2015, accounting for both dependency and heterogeneity across regions. The results support evidence for the growth hypothesis in the regions, such as Anhui, Henan, Jiangxi, Jilin, Fujian, Jiangsu, Shandong, Tianjin, Chognqing, Inner Mongolia, Qinghai, Tibet and Yunnan. A reverse relationship supports evidence on the conservation hypothesis for the regions, such as Hubei and Hunan. A reciprocal causal relationship was found in Hebei and Shannxi, while the result of a neutrality hypothesis supported 14 of these 31 major regions. The empirical findings of this study provide important policy implications for China’s 31 major regions.
Ключевые слова: Economic growth, international tourism receipts, China’s major regions, dependency and heterogeneity, bootstrap panel Granger causality test