Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Estimation Model of Dry Docking Duration. A Data Mining Approach
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Riara Novita and Isti Surjandari
ISBN: 9786202050814
Год издания: 2017
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 80
Издательство: LAP LAMBERT Academic Publishing
Цена: 21983 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: As its function to connect people between islands at more competitive prices, sea transportation become one of the most vital facilities for some archipelagic countries, like Indonesia. This is the reason why the number of units of sea transportation in Indonesia keeps on increasing every year. In this industry, maintenance is one of the most important activities in shipping industry as it can determine the eligibility of the ship. However, this activity is not offset by the capacity of the national shipyard, makes the estimation of ship maintenance duration as a very important. This research uses one of data mining method, namely CART (Classification and Regression Tree) to estimate the duration of maintenance that is limited to dock works or which is known as dry docking. By using the volume of dock works as an input to estimate the duration, there are 4 classes of dry docking duration obtained with the different linear model and job criteria for each class. These linear models can then be used to estimate the duration of dry docking based on its job criteria.
Ключевые слова: Data Mining, Classification and Regression Tree (CART), Duration of Maintenance, Dry Docking