Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Tumours Detection in Breast MRI Images Using Improved Methods. Improved Computer Image Processing Methods for Tumours Segmentation and Detection in Breast Magnetic Resonance Imaging
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Ali Qusay Al-Faris,Umi Kalthum Ngah and Nor Ashidi Mat Isa
ISBN: 9786202075589
Год издания: 2017
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 180
Издательство: LAP LAMBERT Academic Publishing
Цена: 42454 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 181549
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Breast cancer is the leading cause of death amongst cancer patients afflicting women and the second most common cancer around the world. Magnetic Resonance Imaging (MRI) is one of the most effective radiology tools to screen breast cancer. However, image processing techniques are needed to help radiologists in interpreting the images and segmenting tumours regions to reduce the number of false-positive. In this study, a segmentation approach with automatic features is developed for breast MRI tumours. The methodology starts with data acquisition followed by pre-processing. This is then followed with breast skin-line exclusion using integrated method of Level Set Active Contour and Morphological Thinning. Next, regions of interests are detected using proposed Mean Maximum Raw Thresholding method. In the tumour segmentation phase, two modified Seeded Region Growing (SRG) methods are proposed; i.e. Breast MRI Tumour using Modified Automatic SRG and Breast MRI Tumour using SRG based on Particle Swarm Optimization Image Clustering. From the evaluation results, it can be noticed that the proposed approaches scored high results using various measures comparing to previous methods.
Ключевые слова: breast cancer, CAD, image processing, Medical Image Processing, segmentation, tumor