Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Accuracy of Textual Document Clustering With Semantic Approach. Natural Language Processing with Semantic by the help of WordNet. The accuracy of Clustering is assured by F-Measure

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: S. K. Ahammad Fahad
ISBN: 9786133991729
Год издания: 2017
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 144
Издательство: LAP LAMBERT Academic Publishing
Цена: 33936 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 182255
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Now the age of information technology, textual document is spontaneously increasing over the internet, e-mail, web pages, offline & online reports, journals, articles and those are stored in the electronic database format. Millions of new text file created in a day, for the lackings of classification, people miss vast information those are useful to several challenges. To maintain and access those documents are very difficult without adequate rating and when there has classification without any information provide call clustering. To overcome such difficulties K-means and others old clustering algorithms are unfit to impart as may be expected on Natural languages. Because of high-dimensional about texts, the presence of logical structure clues within the texts and novel segmentation techniques have taken advantage of advances in generative topic modeling algorithms, specifically designed to spot questions at intervals text to cipher word topic distributions. So considering the limitation, COBWEB conceptual clustering algorithm applied to the preprocessed data. For ensuring the accuracy of clusters, the f-measure accuracy measuring methods selected for evaluating the clusters.
Ключевые слова: Document Clustering, F-measure, Semantic, WordNet, Textual Clustering, Lexical Database, Cobweb Algorithm