Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Performance Enhancing Workflow Scheduling for Cloud.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: T. Lucia Agnes Beena and D. I. George Amalarethinam
ISBN: 9786202305310
Год издания: 2017
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 236
Издательство: Scholars' Press
Цена: 57654 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 182520
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The idea of providing computing as a utility has become a reality today with the advent of Cloud computing. Cloud Infrastructure as a Service (IaaS) enables the cloud user to use services in a flexible environment. The computationally intensive applications and data intensive applications utilize Cloud resources. These applications are represented by workflows or Directed Acyclic Graphs (DAG). Workflow scheduling is a complex issue in IaaS because multiple scheduling parameters are to be considered to satisfy the Quality of Service parameters. The heuristic-based and meta-heuristic based scheduling strategies are to be devised to achieve near optimal solutions within polynomial time. In this book, a variety of scheduling algorithms are proposed. They are Customer Facilitated Cost based scheduling (CFCSC), Level Based Task Prioritization (LBTP), Workflow Scheduling for Public Cloud using Genetic Algorithm (WSGA) and Differential Evolution Algorithm for Workflow Scheduling (DEWS) for Public Cloud. This book provides the picture of Workflow scheduling in the context of Cloud Computing and it will be valuable for those who are doing research in this area.
Ключевые слова: Cloud Computing, Resource Allocation, Workflow Scheduling