Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Modeling of AFM Cantilever. A Micro Cantilever Dynamics
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Manojkumar Salgar and J. Srinivas
ISBN: 9786134948418
Год издания: 2018
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 68
Издательство: LAP LAMBERT Academic Publishing
Цена: 23152 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Atomic force microscopy (AFM) can be used for atomic and nanoscale surface characterization in both air and liquid environments. AFM is basically used to measure the mechanical, chemical and biological properties of the sample under investigation. AFM contains basically a base-excited microcantilever with nano tip along with a sensing circuit for scanning of images. Design and analysis of this microcantilevers is a challenging task in real time practice. In the present work, design and dynamic analysis of rectangular microcantilevers in tapping mode with tip-mass effect is considered. Computer simulations are performed with both lumped-parameter and distributed parameter models. The interatomic forces between the nano tip mass and substrate surfaces are treated using Lennard Jones (LJ) model and DMT model. The equations of motion are derived for both one-degree of freedom lumped parameter model with squeeze-film damping and distributed parameter model under the harmonic base excitation. Also the nonlinearity of the cantilever is investigated by considering cubic stiffness. The distributed parameter model is simplified with one mode approximation using Galerkin’s scheme.
Ключевые слова: Atomic Force Microscopy, micro cantilever, Optimization, vibration