Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Solution of Non-Linear Singular Perturbed System Using ANN.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Farhat Hussain Bazmi
ISBN: 9786138041986
Год издания: 2018
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 68
Издательство: LAP LAMBERT Academic Publishing
Цена: 21556 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: In this research, a numerical computational intelligence method is developed for solving the nonlinear singular perturbed problems in different areas with the uses of optimizers based on artificial neural networks with Active Set Technique (AST), Sequential Quadratic Programing (SQP) and Interior Point Techniques (IPT). The Neural network models are helping to construct a mathematical model for the nonlinear singular perturbed differential equations. The motivation towards this research work comes actually from the aim of introducing a reliable framework that make the combination of ANNs optimized with soft computing frameworks to cope with such challenging linear and non-linear singular perturbed system of equations. The validity of such methods has been examined thoroughly for various non-singular boundary value problems arising in science, engineering and bio engineering as well. Comprehensive numerical experimentation has been performed to validate the accuracy, convergence, and robustness of the designed methodology Further Comparative study has also been made with available standard solution to analyze the correctness of the proposed scheme.
Ключевые слова: Sequential Quadratic Programing (SQP); Active Set Technique (AST); Interior Point Techniques (IPT)