Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
GMM based Offline Handwritten Signature Forgery Detection Technique.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Amit Wadhwa and Neerja Arora
ISBN: 9783659928031
Год издания: 2018
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 92
Издательство: LAP LAMBERT Academic Publishing
Цена: 29185 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 206766
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Handwritten Signature is a behavioral biometric trait which is extensively used for personal authorization. Signatures act as a strong authentication feature of the signer and thus, preserve their valuable assets such as authenticating bank cheques, attendance monitoring, property documents and other confidential documents. But, the manual verification of signatures is difficult job. Thus, an Automated Signature Verification System is required which will improve the authentication process and provide secure means for authorization of legal documents. In this book, Offline Signature Verification System and its various extracted features for forgery detection are discussed. GMM (Gaussian Mixture Model) technique is the important part of this book. GMM is a statistical method in which we have to cluster low level data with the help of several multidimensional Gaussian probability distributions. It allows the modeling of underlying statistics of sample data to be more flexible and precise. This work would be helpful for professionals and students/researchers who want to get an insight regarding how GMM Technique works for Offline Handwritten Signature Verification to detect forgery.
Ключевые слова: biometrics, Digital Image Processing, Matlab