Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
A Secure Cloud Framework For Text Processing Using Hadoop MapReduce.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: P. Srinivasa Rao,Nagesh Vadaparthy and Sushma Rani Narnindi
ISBN: 9786139828579
Год издания: 2018
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 232
Издательство: LAP LAMBERT Academic Publishing
Цена: 46943 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 206955
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Digitalization has made the enterprise data rich, with information pertaining to personal as well as business. The question remains whether or not we make use of this massive data for any use. The advent of data intensive applications leads to development of a framework which will crunch massive volumes of information into a knowledgeable source. Hadoop Map Reduce frame work facilitates processing of the huge collection of information in an efficient manner. In Hadoop, it is known that there is delay in execution of the processes submitted by various users at peak loads through SSH authentication. The massive data in the framework is vulnerable when it is outsourced to cloud, as computation as service; for that several authors proposed to use encrypted data, but the user is not allowed to perform read/write operation on encrypted data directly with the existing Hadoop Map Reduce Framework. Hence, in this book, authors aim at providing i) authentication, ii) security to the data being processed and iii) facility for effective retrieval mechanism in Hadoop Map Reduce frame work.
Ключевые слова: Cloud Computing, Hadoop, HDFS, MapReduce, Name node, Data Node, Task Tracker, Job Tracker