Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
GA Optimized Fuzzy Adaptive Data Routing in Wireless Sensor Networks. Energy Efficient Selection of Verification Nodes and Routes for Data Forwarding
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Muhammad Akram,Taeho Cho and Muhammad Ashraf
ISBN: 9786139840038
Год издания: 2018
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 116
Издательство: LAP LAMBERT Academic Publishing
Цена: 30038 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 206956
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Wireless sensor Networks (WSNs) are highly vulnerable to security attacks due to their reliance on wireless communication. Sensor nodes in WSNs are tiny in size and are supplied with limited energy resources and processing capabilities. These energy and hardware–resource-constrained nodes, without suitable safeguards, may be compromised by adversaries. Several en-route filtering schemes have been proposed to filter out false data en-route. However, almost all such schemes presuppose a conventional underlying routing protocol without regard to the attack status and energy dissipation behavior along the path. This book presents fuzzy-based adaptive selection of the intermediate verification nodes and data forwarding paths with dynamic authentication key dissemination to achieve better energy saving. Fuzzy rule-based scheme potentially balances the load between data forwarding paths, chooses the most suitable path for data forwarding, and generates fresh authentication keys and shares with the intermediate verification nodes. Genetic algorithm-based optimization technique automatically optimizes the membership functions in the fuzzy system.
Ключевые слова: energy efficiency, False Positive, Fuzzy logic, Wireless Sensor Networks, False Negative, GA Optimization