Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Optimized Two-Stage Ensemble Model for License Plate Recognition. Memetically Optimized Two-Stage Fuzzy Support Vector Machine Ensemble Model for License Plate Recognition
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Hussein Samma and Junita Mohamad-Saleh
ISBN: 9786139914357
Год издания: 2018
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 132
Издательство: LAP LAMBERT Academic Publishing
Цена: 36414 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 211338
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Pattern recognition models play an important role in many real-world applications such as text detection and object recognition. Numerous methodologies including Computational Intelligence (CI) models have been developed in the literature to tackle image-based pattern recognition problems. Focused on CI models, this research presents efficient Particle Swarm Optimization (PSO)-based models and their application to license plate recognition. Firstly, a new Reinforcement Learning-based Memetic Particle Swarm Optimization (RLMPSO) model is introduced. Then, RLMPSO is integrated with the Fuzzy Support Vector Machine (FSVM) to formulate an efficient two-stage RLMPSO-FSVM model. Specifically, two-stage RLMPSO-FSVM comprises an ensemble of linear FSVM classifiers that are constructed using RLMPSO to perform parameter tuning, feature selection, as well as training sample selection. Finally, the proposed two-stage RLMPSO-FSVM model is applied to a real-world Malaysian vehicle license plate recognition (VLPR) task.
Ключевые слова: Two-Stage recognition models, Optimization, Fuzzy support vector machine, Memetic particle swarm optimization, Licence plate recognition