Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Optimized Two-Stage Ensemble Model for License Plate Recognition. Memetically Optimized Two-Stage Fuzzy Support Vector Machine Ensemble Model for License Plate Recognition

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Hussein Samma and Junita Mohamad-Saleh
ISBN: 9786139914357
Год издания: 2018
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 132
Издательство: LAP LAMBERT Academic Publishing
Цена: 36414 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 211338
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Pattern recognition models play an important role in many real-world applications such as text detection and object recognition. Numerous methodologies including Computational Intelligence (CI) models have been developed in the literature to tackle image-based pattern recognition problems. Focused on CI models, this research presents efficient Particle Swarm Optimization (PSO)-based models and their application to license plate recognition. Firstly, a new Reinforcement Learning-based Memetic Particle Swarm Optimization (RLMPSO) model is introduced. Then, RLMPSO is integrated with the Fuzzy Support Vector Machine (FSVM) to formulate an efficient two-stage RLMPSO-FSVM model. Specifically, two-stage RLMPSO-FSVM comprises an ensemble of linear FSVM classifiers that are constructed using RLMPSO to perform parameter tuning, feature selection, as well as training sample selection. Finally, the proposed two-stage RLMPSO-FSVM model is applied to a real-world Malaysian vehicle license plate recognition (VLPR) task.
Ключевые слова: Two-Stage recognition models, Optimization, Fuzzy support vector machine, Memetic particle swarm optimization, Licence plate recognition