Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Enhancement of Degraded Text Images & Performance Comparison. A Research work on quality Enhancement of Poor Degraded Images
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Vijay Kumar Sinha and Karun Verma
ISBN: 9786139999262
Год издания: 2019
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 68
Издательство: LAP LAMBERT Academic Publishing
Цена: 23493 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 218512
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Text recognition from distorted or degraded images especially handwritten is a challenge in computing . The present research work on “Enhancement Of Degraded Text Images & Performance Comparison", is an excellent effort to enhance the degraded text images caused by poor scanning, historical papers, and other causes. This study will propose a technique for the enhancement of such a degraded text document images to improve their display quality characteristics by using thresh hold values as well as a comparison of performance among them. Images believed to be representative of the same symbol which occurs in different positions over an image source are clustered together. Using the symbols within a particular cluster, an average character image outline for that cluster of symbols is derived and thereafter used to refine the matching of symbols within the cluster and to determine a final representative symbol for that cluster. Thus the partially visible or distorted text can be recognized. The work will definitely prove a helping hand to young researchers for developing new ideas and algorithms to resolve the practical problems of text image degradation and their recovery.
Ключевые слова: thresholding, segmentation, Clustering, histogram, Edge Detection, Watershed transformation, Otsu Algorithm, Bi Level Algorithm, Mean Algorithm