Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Numerical Solution for Partial Differential Equations (PDE's). The Stability of One Space Dimension Diffusion Equation with Finite Difference Methods

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Michael Mkwizu
ISBN: 9783846582398
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 68
Издательство: LAP LAMBERT Academic Publishing
Цена: 30074 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 474908
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: This book is intended to determine the stability of one space dimension diffusion equation. A Matlab code of finite difference methods with increment of time-space was used in which the behaviour of the errors was observed from the graphs. The explicit scheme was stable with Dirichlet boundary condition when considering space for r less than or equal to 0.5. It was observed that as the gradient alpha of temperature decreases with derivative boundary conditions, the interval of r for the explicit scheme stet stable decreases from the values r less than or equal to 0.5 corresponding to Dirichlet boundary conditions. When the term with coefficient gamma is added to the PDE,explicit scheme becomes stable depending to the value of gamma. The Crank-Nicolson and semi-analytic schemes were stable with both Dirichlet boundary conditions and derivative boundary conditions for all r. It was observed that the Crank-Nicolson scheme was accurate than explicit scheme. The semi-analytic method has only one source of error, the space discretization also it is able to solve for a vector of time simultaneously. But with sufficient small r all three methods were performed well.
Ключевые слова: Applied Mathematics
Похожие издания
Отрасли знаний: Точные науки -> Математика
waheed zahra,Waleed Adel and Magdi EL-Azab
B-Spline Solution of Partial Differential Equations. Applications of B-spline functions in the numerical solution of partial differential equations.
2016 г.,  128 стр.,  мягкий переплет
This work considers the numerical approximation of differential equations by using the B-spline method. The following types of problems in differential equations are investigated: • Second, third and fifth-order nonlinear boundary-value problems in partial differential equations. • Third-order nonlinear boundary value coupled equations in...

35851 тг
Бумажная версия
Отрасли знаний: Точные науки -> Математика
Ruxin Dai
High Performance Numerical Solution of Partial Differential Equations. Richardson Extrapolation-based High Accuracy High Efficiency Computation for Partial Differential Equations.
2016 г.,  188 стр.,  мягкий переплет
A Richardson extrapolation-based sixth-order method is developed for 2D and 3D steady-state equations on uniform grids. Richardson extrapolation is applied to explicitly compute a sixth-order solution on the coarse grid from two fourth-order solutions with different related scale grids. Other computational techniques (i.e., iterative operator...

46437 тг
Бумажная версия