Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Phishing Website Detection using Intelligent Data Mining Techniques. Design and Development of an Intelligent Association Classification Fuzzy Based Scheme for Phishing Website Detection
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Maher Aburrous,Alamgir Hossain and Keshav Dahal
ISBN: 9783847335290
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 192
Издательство: LAP LAMBERT Academic Publishing
Цена: 44518 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 476492
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Detecting phishing website is a complex task which requires significant expert knowledge and experience. So far, various solutions have been proposed and developed to address these problems. Most of these approaches are not able to make a decision dynamically, giving rise to a large number of false positives. This is mainly due to limitation of the previously proposed approaches. In this book, we investigate and develop the application of an intelligent fuzzy-based classification system for phishing website detection. The proposed intelligent phishing detection system employed Fuzzy Logic (FL) model with association classification mining algorithms. Different phishing experiments which cover all phishing attacks, motivations and deception behavior techniques have been conducted to cover all phishing concerns. A comparative study and analysis showed that the proposed learning approach has a higher degree of predictive and detective capability than existing models. The proposed system was developed, tested and validated by incorporating the scheme as a web based plug-ins phishing toolbar to provide an effective help for real-time phishing website detection for all internet users.
Ключевые слова: E-Banking, associations, classification, security, Phishing, fuzzy logic, machine learning, Data Mining, Hacking