Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Feature Subset Selection in Intrusion Detection. Using Soft Computing Techniques
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Iftikhar Ahmad
ISBN: 9783847344964
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 220
Издательство: LAP LAMBERT Academic Publishing
Цена: 51326 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 476943
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Intrusions on computer network systems are major security issues these days. Therefore, it is of utmost importance to prevent such intrusions. The prevention of such intrusions is entirely dependent on their detection that is a main part of any security tool. A variety of intrusion detection approaches are available but the main problem is their performance, which can be enhanced by increasing the detection rates and reducing false positives. PCA has been employed to transform raw features into principal features space and select the features based on their sensitivity. This research applied a GA to search the principal feature space that offers a subset of features with optimal sensitivity. Based on the selected features, the classification is performed. The SVM and MLP are used for classification. This research work uses the KDD dataset. The performance of this approach was analyzed and compared with existing approaches. The results show that proposed method provides an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.
Ключевые слова: IDS, feature selection, Intrusive Analysis, and Optimal Performance, Soft Computing, classifiers
Похожие издания
Отрасли экономики: Промышленность в целом Anil T FEATURE SUBSET SELECTION OF PROTEIN SEQUENCE. DATA IN A BACTERIA KNOWLEDGE BASE. 1905 г., 52 стр., мягкий переплет The feature subset selection of protein sequence data in a bacteria knowledge base refers to the process of identifying a relevant and informative subset of features from a large set of protein sequence data for further analysis and modeling.Protein sequences play a crucial role in understanding the function and characteristics of bacteria.... | 26810 тг |