Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Dynamic Neural Network for Predicting Creep of Structural Masonry. An Application of Artificial Intelligence Techniques
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Mustafa Mohammed Abed
ISBN: 9783846588208
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 96
Издательство: LAP LAMBERT Academic Publishing
Цена: 31069 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 478243
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: One of the inherent modeling problems in structural engineering is creep of quasi-brittle materials (e.g., concrete and masonry). The creep strain represents the non-instantaneous strain that occurs with time when the stress is sustained. Several creep models with limited accuracy have been developed within the last few decades to predict creep of concrete and masonry structures. The stochastic nature of creep deformation and its reliance on a large number of uncontrolled parameters (e.g., relative humidity, age of loading, stress level) makes the process of prediction difficult, and yet accurate mathematical model almost impossible. This study investigates the potential use of Dynamic Neural Network (DNN) for predicting creep of structural masonry. The main motive of use DNN is that DNN could memorize the sequential or time-varying patterns while training process. Thus, DNN becomes more capable of capturing the time-dependent of creep deformation than the static networks. The results showed that the developed DNN models are able to predict the creep deformation with an excellent level of accuracy compared with that of conventional methods and the static networks models.
Ключевые слова: Dynamic Neural Network, Masonry Structures, Creep, prediction model
Похожие издания
Отрасли знаний: Точные науки -> Информатика и программирование Lyn Rees A Hydrodynamic Neural Network Model For The River Thames. Hydroinformatic River Modelling. 2012 г., 304 стр., мягкий переплет River modelling has to overcome difficulties such as lack of complete measured data or incomplete data, complicated hydrodynamic equations and turbulence. Since neural networks can simulate directly from the given data, without any a priori equations, they can overcome many if not all of these difficulties. Beginning with an introduction to neural... | 54310 тг |