Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Speech Recognition with efficient use of Support Vector Machines. A comparison between Linear Discriminant Analysis and Support vector machines
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Muhammad Farhan Khan and Muhammad Asif Zakriyya
ISBN: 9783848434466
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 92
Издательство: LAP LAMBERT Academic Publishing
Цена: 30926 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 480345
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The book in hand provides the reader with the basics of speech as well as in-depth technicalities of accurate recognition by use of two different artificial intelligence techniques. The literature review presented in a number of chapters, refines user's concepts about the phonetics and mel frequency ceptstral cofficients that characterize speech as well as voice. These coefficients are then operated upon in MATLAB for analysis and classification to one of the predefined classes of a trained system. After reading this book thoroughly the user will be able to conclude that the efficiency of recognition is enhanced when two artificial intelligence or classification techniques, called Linear Discriminant Analysis and Support vector machines, concatenate. This book also gives brief knowledge about the Mercer Kernel, k-nearest neighbor and many other technical concepts.
Ключевые слова: Support Vector Machines, Speech recognition, Mercer Kernel
Похожие издания
Отрасли знаний: Точные науки -> Информатика и программирование -> Интернет и локальные сети Sathyanarayanan Kuppusami Recurrent Neural Network based Probabilistic Language Model. Speech Recognition with Probabilistic Language Model. 2017 г., 60 стр., мягкий переплет Statistical n-gram language models are widely used for their state of the art performance in a continuous speech recognition system. In a domain based scenario, the sequences vary at large for expressing same context by the speakers. But, holding all possible sequences in training corpora for estimating n-gram probabilities is practically... | 16526 тг |