Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Survey on data mining techniques in intrusion detection. Information Security with Data Mining

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Amanpreet Chauhan
ISBN: 9783848480135
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 64
Издательство: LAP LAMBERT Academic Publishing
Цена: 29932 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 480855
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Data mining is the extraction of the valuable data from the large amount of data. There are numerous number of algorithms available for data mining. Single algorithm is not capable of producing efficient results. There is a key term in data mining known as ensemble learning which means combining two or more classifiers for the better result.I have used the KDD'99 dataset for the experiment which have 41 features labeled either as normal or as attack. In this book I have represented how the graphical tool weka can be used for data mining and how ensemble learning can be implemented using weka. I have used three classifiers with the Bagging ensemble learning approach which are complementary naive bayes and two are rule based classifiers, part and jrip. My experiment shows that bagging improves the efficiency of the rule based classifiers as well as of naive bayes; however, the rule based classifiers become more efficient with bagging.
Ключевые слова: Data Mining, fuzzy logic, Naive Bayes, decision trees, data clustering, network intrusion, Naive Bayes, Support Vector Machines.