Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Semantic Web Based Data Cloud. Mining Association rules
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Kanhaiya Lal
ISBN: 9783659204487
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 88
Издательство: LAP LAMBERT Academic Publishing
Цена: 30784 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 484537
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Data mining is a treatment process to extract useful and interesting knowledge from large amount of data. The knowledge modes data mining discovered have a variety of different types. The common patterns are: association mode, classification model, class model, sequence pattern and so on. Mining association rules is one of the most important aspects in data mining. Association rules are dependency rules which predict occurrence of an item based on occurrences of other items. The process of building the Semantic Web is currently an area of high activity. Its structure has to be defined, and this structure then has to be filled with life. Cloud computing is a highly touted recent phenomenon. The cloud may move data or computation to improve responsiveness. Some clouds monitor their offerings for malicious activity Visualization. Hardware resources in clouds are usually Virtual; they are shared by multiple users to improve efficiency. This book deals technique of association rules mining in semantic web based data cloud. KEY FEATURES: Explains the basic knowledge of cloud computing, Data & web mining. Provides Concept of Association rules & Algorithm for mining Association Rules.
Ключевые слова: Data Mining, Semantic Web, algorithms, Data Cloud, Pipeline