Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Software Effort Estimation using Outlier Elimination Methods. A Modern Approach to Software Effort Estimation
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Nazish Murtaza
ISBN: 9783659112355
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 68
Издательство: LAP LAMBERT Academic Publishing
Цена: 30074 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 488137
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Software engineering society has always faced the problems of accuracy of Software effort estimation. To advance the estimation accuracy of software effort, many studies have focused on effort estimation methods without any concern of data quality, although data quality is one of important factor to impact to the estimation accuracy. So I investigated the influence of outlier elimination upon the accuracy of software effort estimation through experiments applying two outlier elimination methods (K-means clustering and My-K-means clustering) and two effort estimation methods( Least squares and Neural network) associatively. A new outlier elimination method My-K-means clustering is proposed which gives better estimation results than K-means clustering. The experiments were performed using the Bank data set which consists of the project data performed in a bank in Pakistan, with or without outlier elimination.
Ключевые слова: Effort Estimation, Outlier Elimination
Похожие издания
Отрасли экономики: Промышленность в целом Jagannath Singh and Bibhudatta Sahoo Software Effort Estimation Using Artificial Neural Networks. A performance analysis of different ANNs. 2012 г., 84 стр., мягкий переплет Continuous changing scenarios of software development technology make effort estimation more challenging. Some of the difficulties of estimation arise from the complexity and invisibility of software. Software development is intensively human activity and can’t be free from error. Ability of ANN(Artificial Neural Network) to model a complex... | 30642 тг |