Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Optimizing Accuracy In Decision Making Using Evolutionary Computing. Decision Support System: Analytic Hierarchy Process using Evolutionary Computing
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Nur Farha Zakaria,Halina Mohamed Dahlan and Ab. Razak Che Hussin
ISBN: 9783659216312
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 104
Издательство: LAP LAMBERT Academic Publishing
Цена: 31353 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 490785
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Analytic Hierarchy Process (AHP) is one of the methods in Decision Support Systems (DSS). AHP has been criticized mainly for its priority deviation method, which is one of AHP’s main components. The priority derivation method, also referred to as prioritization method, is used to derive priorities in order to represent the rank of alternatives in AHP. There are two approaches to derive priorities in AHP, which are non-optimization approach and optimization approach. However, this study found three main problems in the current prioritization methods which are inconsistency of the judgment, non-evolutionary computing approach, and accuracy performance of the prioritization method. In solving these problems, this study proposed Evolutionary Computing Procedure for Deriving Priorities (ECPDP). The ECPDP is an EC-based procedure and derives priorities by solving single objective optimization problem (SOP) through maximizing the accuracy of the solution, by using Total Deviation (TD) as an objective function. The result by using ECPDP is more promising as opposed to the other prioritization methods in terms of TD value.
Ключевые слова: evolutionary computing, decision making, Analytic Hierarchy Process, genetic algorithm, Accuracy