Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Automatic Categorization Of Amharic News Text. A Machine Learning Approach
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Surafel Teklu
ISBN: 9783659216701
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 108
Издательство: LAP LAMBERT Academic Publishing
Цена: 31495 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 491559
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Currently news items subject classification in Ethiopia is done manually by journalists which is time consuming task (although they are using computer system to store and dispatch information). This research experimented the application of machine learning techniques to automatic categorization of Amharic news items. Machine learning techniques, Na?ve Bayes and k Nearest Neighbor classifiers, were used to categorize the Amharic news items. 11, 024 news articles were used to do this research. To come up with good results text preparation and per-processing was done. Stop-word and words that occur in 3 or less documents were removed from the collection. Thirty-three percent of the data was used for testing purposes. The result of this research indicated that such classifiers are applicable to automatically classify Amharic news items. However, the classifiers work well when the categories contain almost evenly distributed news items. The best result obtained is by the na?ve Bayes. The result of this research is promising. Nevertheless, additional works are recommended in order to come up with good result.
Ключевые слова: machine learning, text categorization, Naive Bayes, Naive Bayes, K Nearest Neigbor