Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Forecasting the Compressive Strength of SCC by ANNs. The Application of Artificial Neural Networks to Predict the Compressive Strength of Self-Compacting Concretes
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Ali Papzan,Taksiah A. Majid and Megat Azmi Megat Johari
ISBN: 9783659199202
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 180
Издательство: LAP LAMBERT Academic Publishing
Цена: 44092 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The book is subdivided into five chapters. Each chapter is briefly described as follows: Chapter 1 gives a general background of the subject matter and serves as an introductory chapter. It incorporates the background of the study, problem statement, objectives of the research and a brief on the outline. Chapter 2 comprises of information relevant to this work. It includes background information on concrete characteristics, self compacting concrete, artificial intelligence, and the application of artificial neural networks in concrete research. Chapter 3 is devoted to the methodology adopted to achieve the objectives of the research. This includes investigation of the best network used for the prediction of self compacting concrete characteristics by using published experimental data. Chapter 4 describes the details on modelling and programming. It also presents all steps in designing artificial neural network and comprises the results of the main proposed training functions to obtain the best network. Chapter 5 contains the conclusions arrived at and gives the recommendations for future works.
Ключевые слова: Artificial Neural Networks, compressive strength, SELF-COMPACTING CONCRETES