Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Deterministic and Stochastic Dynamics of Multi-Variable Neuron Models. Resonance, Filtered Fluctuations and Sodium-Current Inactivation

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Azadeh Khajeh alijani
ISBN: 9783659217746
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 188
Издательство: LAP LAMBERT Academic Publishing
Цена: 44376 тг
Положить в корзину
Ожидает определения тематики
Код товара: 493073
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Neurons are the basic elements of the networks that constitute the computational units of the brain. They dynamically transform input information into sequences of electrical pulses. Therefore it is crucial to understand this transformation and identify simple neuron models which accurately reproduce the known features of biological neurons. This book addresses three different features of neurons. We start by exploring the effect of subthreshold resonance on the response of a periodically forced neuron and show qualitatively distinct responses including mode locking and chaos. Then we will consider an experimentally verified model with realistic spike-generating mechanism and study the effect of filtered synaptic fluctuations on the firing-rate response of the neuron. Finally, a model is studied that incorporates threshold variability of neurons. We determine the modulation of the input-output properties of the model due to oscillatory inputs and in the presence of synaptic fluctuations. This book would be useful to understand the above properties of neurons and to learn some mathematical methods in analyzing deterministic and stochastic neuron models.
Ключевые слова: Mathematical Neuroscience, Stochastic and Deterministic Methods, Population density Methods, Resonate-and-Fire Model, Exponential Integrate-and-fire Model, Mode-locking and Chaos