Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Groundwater Modelling. A Comparison Between Multiple Regression and Artificial Neural Network Approaches

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Rupak Sarkar
ISBN: 9783659259487
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 156
Издательство: LAP LAMBERT Academic Publishing
Цена: 38484 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 494218
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Groundwater is being exploited indiscriminately to meet our ever increasing demand of water in different parts of the world. In India, the Gangetic plane is amongst the most fertile land of the country. Over the past couple of decades, intensive growth in agriculture, industries, and human population have increased the water demand substantially. As a result severe problems of groundwater table declination have taken place causing threat to future availability of water. Keeping these in view, a study was undertaken in the Ramganga-Bahgul interbasin of Uttar Pradesh, India, to investigate the groundwater behaviour, analyse the causes behind water table declination, and estimate the stages of groundwater development. The collected field data were used to develop groundwater models using multiple regression and artificial neural network (ANN) approaches for the prediction of seasonal water table depths below ground level in the study area. The performance of both multiple regression and ANN models were compared and evaluated.
Ключевые слова: Modelling, multiple regression, Artificial Neural Network, Groundwater hydrology