Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Biometric Authentication: An Hybrid Face Recognition System Model. A Face Recognition System using Principal Component Analysis and Feature-Based technique
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Adebayo Kolawole John
ISBN: 9783659259111
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 96
Издательство: LAP LAMBERT Academic Publishing
Цена: 31069 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 494679
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: A biometric authentication system based on face recognition is implemented and described in this work. The proposed algorithm is a combination of Principal Component Analysis (PCA) and a Feature based technique which is based on the two modalities used in face recognition i.e. The Holistic approach and Feature-based approach. PCA which was used as our mainstay algorithm, based on information theory concepts, seeks a computational model that best describes a face, by extracting the most relevant information contained in that face. With the feature based, we localized and measured some key features of the face such as the width and height of the face and the head midpoint. Based on this measurement, we generated a weight also for each image which we then combine with the weights computed from the eigenface approach. Recognition and authentication is performed by projecting a probe to the proposed system. Olivetti Research Lab (ORL) face database along with the face database we constructed (Colface face database) from images taken of fifty subjects of pure black population at varying pose and light intensities were used to test the system. A good and considerable result was achieved
Ключевые слова: face recognition, PCA, biometrics, Eigenface, LDA, MPCA, Feature Based, Authentication.