Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Environmental and Ecological Data Analysis. Basics, Concepts and Methods
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Zerihun Woldu
ISBN: 9783659261541
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 408
Издательство: LAP LAMBERT Academic Publishing
Цена: 58004 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The last fifteen years have seen a surge in the development and use of modern quantitative methods in environmental and ecological data analysis. However, the available literature focus on only a few aspects of the methodology and leave out some of the important ones. This book provides a comprehensive account of both established and new techniques of multivariate data analysis appropriate to the study of environmental and ecological problems. This book is prepared using a recently most popular Programming Language called R, which is an open-source statistical environment. The choice of R for this purpose is influenced by the fact that it is powerful, free and the graphics capability is unparalleled. The book is a result of research, testing and successive refinements of methods and approaches. This comprehensive and flexible treatment of the most important multivariate data analysis techniques will be of great value to graduate students and professional researchers in ecology, agriculture, forestry and environmental management, and to statisticians and mathematicians working with ecological and environmental problems.
Ключевые слова: diversity, Cluster Analysis, Analysis of variance, Multiple Linear Regression, Data Frame, direct gradient analysis, indirect gradient analysis