Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Prediction of Tribological Properties of Al MMCs using ANN Models. Wear Studies of Aluminum based Metal Matrix Composites and Prediction of Wear using Artificial Neural Networks
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Veeresh Kumar G. B.,C. S. P. Rao and N. Selvaraj
ISBN: 9783659577482
Год издания: 2019
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 184
Издательство: LAP LAMBERT Academic Publishing
Цена: 46295 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The superior properties of composite materials over conventional materials have been well acknowledged by the research community. In particular, Aluminum Metal Matrix Composites (Al-MMCs) are sought over other conventional engineering materials owing to their excellent mechanical properties and outstanding wear resistance. Al-MMCs are widely used in aerospace, marine and automotive industries for different applications. Wear is a complex phenomenon and the most important reason for the damage and consequent failure of machine parts. A lot of experiments have to be conducted in order to study the wear behavior resulting in wastage of both manpower and money. In several Artificial Intelligence (AI), an Artificial Neural Networks (ANN) help in reducing the cost of experiments when implemented with care and enough data in prediction of wear. Al-MMCs subjected to wear studies and with the obtained data, an ANN model was developed to predict the tribological properties of the Al6061 and Al7075 reinforced with SiC and Al2O3 MMCs. The predicted values of tribological properties of MMCs using a well trained ANN were found in good agreement with experimental values.
Ключевые слова: Al-MMCs, Hardness, Wear, Tribology, Artificial Intelligence, artificial neural network