Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Cloud WSN: From Modelling to Applications.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Mohamed Jacem Guezguez
ISBN: 9786200530646
Год издания: 2020
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 188
Издательство: LAP LAMBERT Academic Publishing
Цена: 46437 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The main objective of this book is the design of Cloud-WSN platforms able to provide a wide range of services to end users and comply with security and QoS requirements. The first contribution consists in designing a self-configurable sensor Cloud-WSN architecture providing QoS-aware and secure healthcare services. The second contribution focus in designing a novel Smartphone Cloud oriented architecture to use smartphones as Observers in order to provide Femtocell attacks detection As A Service to Mobile Network Operators. The third contribution consists in designing a novel Smartphone Cloud architecture able to provide data muling as a service to end users. A game-based model is proposed to optimally reward mobile subscribers for providing data muling services using their smartphones, depending on their trustworthiness and their ability to meet the delivery constraints. In the last contribution, we propose a self-reconfigurable Cloud-based smartphone infrastructure able to provide surveillance-based services to customers. Several interactions are modelled inside the proposed self-reconfigurable Cloud WSN platform using XMPP as an emerging communication protocol.
Ключевые слова: Cloud WSN, modelling, applications, design of Cloud-WSN