Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Differential Geometry. On Properties of Involute and Evolute Curves in the Hyperbolic and de Sitter Spaces
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Assem Abdel-Salam
ISBN: 9786200550330
Год издания: 2020
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 128
Издательство: LAP LAMBERT Academic Publishing
Цена: 32883 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: In this book, we concerned mainly with the evolute and the involute curves as well as their geometric properties in hyperbolic and de Sitter spaces. The evolute of a regular curve is a classical object from the viewpoint of differential geometry. The evolute and involute curves have the most important positions and applications in the study of design problems in spatial mechanisms and physics, kinematics, computer-aided design (CAD) and computer-aided geometric design (CAGD), it is one of the most important topics of differential geometry. Because of this, geometers have studied it in Euclidean, Minkowski, hyperbolic, and de Sitter spaces and they have investigated many properties for it. The evolute of a spherical curve is defined to be the locus of the center of its osculating spheres. Therefore, the evolute of a regular curve without inflection points is given by not only the locus of all its centers of curvature but also the envelope of its normal lines.
Ключевые слова: Hyperbolic Space, de Sitter space, Evolute Curves, Involute Curves