Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Big Data Analytics and Business Architecture of Indian Stock Market. Predictive Analytics of the Indian Stock Market Movements – Applications of Machine Learning and Artificial Intelligence

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Sigo Marxia Oli and Murugesan Selvam
ISBN: 9786200586346
Год издания: 2020
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 232
Издательство: LAP LAMBERT Academic Publishing
Цена: 50642 тг
Положить в корзину
Позиции в рубрикаторе
Сферы деятельности:
Код товара: 567967
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: This book examines the prediction of stock market movements of India using big data analytics. Stock markets have shifted from the guiding principle of standard finance into behavioral finance. Forecasting is one of the classic issues since the stock markets are volatile, stochastic and non-linear in nature. The values of Momentum, Relative Strength Index, Williams %R and Commodity Channel Index indicated both bullish and bearish trends for BSE-Sensex and NSE-Nifty stock indices which were rampant and robust during the study period. This phenomenon negates the Efficient Market Hypothesis, but it confirmed the existence of Random Walk Theory in the realm of capital market movements. One of the neural network methods, the k-nn algorithm exhibited a higher predictive accuracy than the logistic regression approach. The business architecture and market value of company stocks are changing in every millisecond. The close correlation between the predicted and the actual values indicated that deep learning methods such as Machine Learning and Artificial Neural Networks were more powerful tools in the stock price prediction and helped the investors to make intelligent investment decisions.
Ключевые слова: Artificial Intelligence, behavioral finance, Big Data, Business Architecture, decision sciences, Financial Markets, investment banking, Machine Learning, neural networks, predictive analytics, Sustainable Business, Wealth Maximization, corporate finance, Investment Analysis, information systems, strategic management