Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
AN INTELLIGENT APPROACH ON SECURITY AND PRIVACY IN WSN. Used Artificial Neural Network Framework
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Pardeep Kumar
ISBN: 9786200654250
Год издания: 2020
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 164
Издательство: LAP LAMBERT Academic Publishing
Цена: 42391 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Security worries for WSNs there are an assortment of novel difficulties. Security change procedures have computational, communication and capacity pre requisites, which additionally force sensor hubs. Also, it is unreasonable to have a main issue of control in sensor networks on account of their asset limitations and network elements. In this way, the improvement of a decentralized security arrangement is essential for WSN ideal proficiency. In this thesis, we propose a new approach for securing wireless communications for wearable and implantable healthcare devices using gait signal energy variations and an Artificial Neural Network (ANN) framework. By simultaneously extracting similar features from BSN sensors using our approach, binary keys can be generated on demand without user intervention. Through an extensive analysis on our approach using a gait dataset, the results have shown that the binary keys generated using our approach have high entropy for all subjects. Wearable sensors are currently the basis of monitoring and analyzing gait outside the clinical environment with, among others, tele-health and tele-care applications.
Ключевые слова: Wireless Sensor Networks, Artifical Naural Network, Gait Signal Estimation, Seurity, Privacy, Body Sensor Networks