Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Predicting the Removal Amount of SCN- by TiO2 NPs Using ANN Methods. Using Novel Artificial Neural Network Methods in Removing Aqueous Thiocyanate Anions by Titanium Dioxide Nanoparticles
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Rashin Andayesh
ISBN: 9786202514071
Год издания: 2020
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 52
Издательство: LAP LAMBERT Academic Publishing
Цена: 22924 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: In this work, the adsorbent method is performed using arti?cial neural network (ANN) modeling. The adsorbent is applied for removal of Thiocyanate in water samples using Titanium Dioxide (TiO2) nanoparticles as effective sorbent. Prediction amount of Thiocyanate removal was investigated with novel algorithms of neural network. For this purpose, six parameters were chosen as training input data of neural network functions including pH, time of stirring, the mass of adsorbent, volume of TiO2, volume of Fe (III), and volume of buffer. Performances of the suggested methods were examined using statistical parameters and found that it is an ef?cient, effective modeling satisfactory outputs. The radial basis function (RBF) and Levenberg-Marquardt (LM) algorithm could accurately predict the experimental data with correlation coefficient of 0.997939 and 0.99931, respectively. The Pearson's Chi–square measure was found to be 29.00 for most variables, indicating that these variables are likely to be dependent in some way.
Ключевые слова: thiocyanate, titanium dioxide nanoparticles, Fe-SCN complex, artificial neural network, Pearson's Chi–square, Chemistry