Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Canny Operator Based DRLSE Algorithm for Medical Image Segmentation. Biomedical Image Processing
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Dipali Dhake,Rupali Kawade and Vijayalaxmi Kumbar
ISBN: 9786202520324
Год издания: 2020
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 76
Издательство: LAP LAMBERT Academic Publishing
Цена: 23777 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Medical image segmentation is one of the most important parts of clinical diagnostic tools.The distance regularization effect eliminates the need for reinitialization and thereby avoids its induced numerical errors. DRLSE in which the regularity of the level set function is intrinsically maintained during the level set evolution. The level set evolution is derived as the gradient flow that minimizes energy functional with a distance regularization term and an external energy that drives the motion of the zero level set toward desired locations. The distance regularization term is defined with a potential function such that the derived level set evolution has a unique forward-and-backward (FAB) diffusion effect, which is able to maintain a desired shape of the level set function. Canny operator used to determine the edges and edge directions. Then used a new variation level set formulation that is DRLSE .The algorithm combines the advantages of canny operator which can orient the boundary accurately and the idea that DRLSE algorithm continuously evolves the boundary in image space. Compared different types of Color medical images by using various parameters.
Ключевые слова: biomedical, image processing, Algorithm