Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Stability properties of neural networks. Theoretical study and computer simulations
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Snezhana Hristova and Kremena Stefanova
ISBN: 9786202666589
Год издания: 2020
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 152
Издательство: LAP LAMBERT Academic Publishing
Цена: 37125 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The main aim of the book is to present various types of neural networks and their stability properties illustrated by simulations. It is given several discrete models such as Hopfield-type delay impulsive neural networks, neural networks with non-instantaneous impulses and delays, and several continuous neural networks with switching topologies at impulsive times both deterministic as well as random. It is discussed different types of stability properties of the considered models. Also, it is studied the leader-following consensus problem for discrete multi-agent system with non-instantaneous impulses. Most of the theoretical results are illustrated by computer simulations. The study in the book is motivated by the potential applications of neural networks. It required the definitions and study of models which can more adequate describe the behavior in multi-agent systems. Much of the material presented in this book is based on the recent research of authors on the topic. The current book is intended for a wide audience, including Mathematicians, Applied Researchers, and Practitioners, whose interest extends beyond the boundaries of qualitative analysis of neural networks.
Ключевые слова: neural networks, stability properties, computer simulations