Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Hyperspectral Remote Sensing for Land Cover Classification. Hyperspectral Data for Land Cover Classification and Chlorophyll Content Estimation Using Machine Learning Techniques

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Subir Paul and Nagesh Kumar Dasika
ISBN: 9786202794930
Год издания: 2020
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 188
Издательство: LAP LAMBERT Academic Publishing
Цена: 43243 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 574572
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: In recent years, remote sensing images have great potential for continuous spatial and temporal monitoring of Earth surface features. High-dimensional hyperspectral (HS) data are highly resourceful compared with multispectral (MS) data but handling such large volume data is a very challenging task, which should be addressed with the use of feature selection or feature extraction-based dimensionality reduction techniques. The major focus of this book is to demonstrate recently proposed computationally efficient approaches based on advanced machine learning and deep learning techniques to achieve better performance for land cover classification, MS to HS data transformation, and chlorophyll content prediction. The research works (i.e. developed techniques and end products), presented in this book, have the potential applications in hydrological modeling, irrigation water management, vegetation condition monitoring, crop yield forecasting, crop insurance planning, etc. In this era, when different space agencies of several countries are planning to launch HS satellite, these research works prove the importance of HS data for numerous applications.
Ключевые слова: Hyperspectral Remote Sensing, Multispectral Remote Sensing, Land Cover Classification, Crop Classification, Chlorophyll Content Prediction, Machine Learning, Deep Learning, Dimensionality Reduction
Похожие издания
Отрасли знаний: Точные науки -> Информатика и программирование
Dibyendu Dutta,Libeesh Lukose and Sourav Samanta
Application of Hyperspectral Remote Sensing in Crop & Soil Studies. .
2019 г.,  128 стр.,  мягкий переплет
This book explores the hyperspectral remote sensing from theoretical and operational perspectives, by bringing all the processing techniques and algorithms comprehensively onto a common platform. Featuring chapters from diverse areas of hyperspectral remote sensing, it addresses i) fundamentals of molecular absorption processes that leads to...

35304 тг
Бумажная версия
Отрасли знаний: Науки о Земле
Arnab Saha
Snow Grain Size Mapping using Hyperspectral Remote Sensing Data. Spectral Analysis, Pre-processing & Snow Grain Size Mapping of EO-1 Hyperion Data in a Part of Lower Himalayan Region.
2018 г.,  68 стр.,  мягкий переплет
Snow is the part of atmosphere in the climate system of the earth and its physical parameters play an important role in hydrological and climate models. The present study explained that the imaging spectroscopy to produce the snow cover maps and estimation of snow grain size in the North-Western Himalayan region. It is necessary to develop an...

21556 тг
Бумажная версия
Отрасли экономики: Промышленность в целом
Sudheer Kumar Tiwari,S. K. Saha and Suresh Kumar
Soil Organic Carbon Mapping Using Hyperspectral Remote Sensing and ANN. .
2017 г.,  60 стр.,  мягкий переплет
Soil organic carbon (SOC) is an important and reliable indicator of soil quality. In this study, soil spectra were characterized and analyzed to predict the spatial SOC content, using multivariate predictive modeling technique-artificial neural network (ANN). EO1-Hyperion (400 - 2500 nm) hyper-spectral image, field and laboratory scale data sets...

21272 тг
Бумажная версия
Отрасли знаний: Науки о Земле
Veronika Kopa?kov?
Hyperspectral Remote Sensing for Environmental Mapping and monitoring. .
2015 г.,  204 стр.,  мягкий переплет
Although the principles of spectroscopy are well known and methods for analysis have been widely developed, particularly for spectra collected in laboratory environments, the heterogeneity of landscapes and earth surface features in extensive environmental studies still presents new challenges and opportunities for analysis of hyperspectral (HS)...

34131 тг
Бумажная версия
Отрасли знаний: Науки о Земле
Himanshu Govil
Hyperspectral Remote Sensing Application in Mineral Exploration. .
2015 г.,  160 стр.,  мягкий переплет
Hyperspectral Remote sensing Application in Mineral Exploration deals with the identification & mapping different hydrothermally altered/weathered minerals in Himalaya. This book provides information about the available hyperspectral technology and its use for identification and mapping of different hydrothermally altered minerals.This book...

42249 тг
Бумажная версия
Отрасли знаний: Науки о Земле
Sumisha Velloth,Raghavendra Mupparthy and Shailesh Nayak
Hyperspectral Remote Sensing of Coral Reefs. .
2015 г.,  172 стр.,  мягкий переплет
Satellite based hyperspectral remote sensing of coral reefs can be used for ecomorphological zonation and species discrimination if sufficient in situ spectra of various coral species were available. However, correcting for atmospheric and water column interference is essential to isolate the relevant signal and to detect submerged reef features....

42675 тг
Бумажная версия