Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Sparse Signal Representation for a single-image Super Resolution. The research on image Statistics gives a forward step to represent the image patch in a better way
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Dr. Jagannath Jadhav and Prof.Amruta Jadhav
ISBN: 9786202803175
Год издания: 2020
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 52
Издательство: LAP LAMBERT Academic Publishing
Цена: 22924 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли экономики:Код товара: 575417
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Many effective approaches designed to solve ill-posed and ill-conditioned problem had deficiencies to fulfill the needs of point spread function (PSF), which is hard to get into the practical situation all the time. So this project introduces a method called as Sparse signal representation for a single-image Super Resolution. The research on image Statistics gives a forward step to represent the image patches in a better way, as a sparse linear combination of elements, which are chosen from complete dictionary. From the coefficients of the sparse representation are utilized to construct the high-resolution output image. Here it trains two dictionaries jointly for the low-and high-resolution image patch, which produces two individual dictionary and it shows that the sparse representations for low- and high-resolution is same. To produce a high resolution image patch, the sparse representation can put together two trained dictionaries of the low- and the high-resolution image patch. A large amount of image patch pair are sampled here, by decreasing the computational cost significantly.
Ключевые слова: Point spread function, Sparsity prior, NN, SVM