Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Prediction of Epidemic Diseases Using Machine Learning Algorithms. Machine Learning
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Chalumuru Suresh,Satish Thatavarthi and A.K. Bhavana
ISBN: 9783330008861
Год издания: 2020
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 68
Издательство: LAP LAMBERT Academic Publishing
Цена: 25266 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 575999
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Dengue is one of the common infectious diseases which is caused by the dengue virus and transmitted to humans by mosquitoes with this many are infected in varied regions around the world per year. The reason for this virus is atmospheric conditions, which play a vital role in the outbreak of dengue. Therefore early prediction of dengue is the key to regulate outbreaks and reduces the transmission within the community. To overcome this we are using various machine learning (ML) algorithms such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest tree (RF), and Decision Tree (DT) are used to predict the dengue outbreak. Prediction is done based on weather parameters like monthly wise maximum temperature, minimum temperature, average temperature, mean temperature, humidity, and Precipitation which is considered as weather dataset and this weather dataset is pre-processed using label encoding function before applying into the training models. The performances of all the models are calculated based on weather datasets.
Ключевые слова: Epidemic Diseases, Machine Learning, prediction