Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Landfill sites suitability mapping utilizing artificial neural network.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Sohaib K M Abujayyab
ISBN: 9786204202907
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 220
Издательство: LAP LAMBERT Academic Publishing
Цена: 46800 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: It is very crucial to have a precise suitability mapping workflow for new landfill sites in the development planning of municipal solid waste management systems. An appropriate siting of landfill sites will protect both environment and public health. However, the complexity in the process of suitability mapping that arises from the attempt to integrate information or decisions from different disciplines has affected the results and leads to an inefficient landfill siting model. In this study, the enhancement of the Landfill sites suitability mapping model was constructed to serve four purposes; (1) new workflow in creating suitability maps at the regional scale for solid waste planning based on neural network (NN); 2) a hybrid network that combines layer-recurrent network and cascade forward neural network to achieve high performance without requiring prior human knowledge; 3) a methodology for selecting the relevant input criteria for landfill GIS model based on multivariate analysis (MVA) methods for maximal performance; and 4) automating an ArcGIS neural network spatial data mining toolbox for mapping the suitability of landfill sites at a regional scale. A case study on landfill s
Ключевые слова: landfill, suitability mapping, artificial neural networks, Multivariate Analysis