Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Application of Spline Collocation to Partial Differential Equations. Spline Collocation for Partial Differential Equations

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Nilesh Patel and Jigisha Pandya
ISBN: 9786203303926
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 128
Издательство: LAP LAMBERT Academic Publishing
Цена: 39022 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 708177
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: The study of differential equations is an extensive field in pure and applied Mathematics. differential equations play an important role in every physical or technical process. Differential equations like those wont to solve real-life issues might not be solvable analytically or terribly tough to possess closed-form solutions are often approximated by numerical methods. During the last few years, piecewise polynomial approximations have become very important in engineering applications. The most popular of such approximating functions are spline functions. The various features of the Spline collocation technique enhance the applicability in the field of numerical analysis to partial differential equations. The present work deals with the use of Spline collocation method to various types of linear as well as non-linear Partial Differential Equations (PDEs) under the different set of boundary conditions. LinearPDEs are solved using Spline explicit and implicit schemes while non-linear PDEs are handled withHofp-Cole transformation and Orlowski and Soczyk transformation (OST) to apply Spline collocation method.
Ключевые слова: Partial Differential Equations, Hofp-Cole Transformation, Burgers equations, Navier-Stokes equations, Spline collocation Method, OST Transformation