Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Outlier Detection Using A New Hybrid Approach On Mixed Dataset. Outlier Detection Using A New Hybrid Approach On Mixed Dataset
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Navneet Kaur
ISBN: 9786202553551
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 64
Издательство: LAP LAMBERT Academic Publishing
Цена: 25124 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 708230
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Data mining is a process of extracting hidden and useful information from the data. Outlier detection is a fundamental part of data mining and has huge attention from the research community recently. An outlier is data object that deviates from other observations. Detecting outliers has important applications in data cleaning as well as in the mining of abnormal points for fraud detection, stock market analysis, intrusion detection, marketing, network sensors. Most of the existing research efforts focus on numerical datasets which are not directly applicable on categorical dataset where there is little sense in ordering the data and calculating distances among data points. Furthermore, a number of the current outlier detection methods require quadratic time with respect to the dataset size and usually need multiple scans of the data; these features are undesirable when the datasets are large. This thesis focuses and evaluates, experimentally, an outlier detection approach that is geared towards categorical sets. In addition, this is a simple, scalable and efficient outlier detection algorithm that has the advantage of discovering outliers in categorical or numerical datasets by per
Ключевые слова: Outliers, dataset, mixed dataset, k mean
Похожие издания
T Sangeetha and Geetha Mary Amalanathan Outlier Detection using Soft Computing Techniques. Detecting Deviant Objects in Various Information Systems using Soft Computing Methods. 2024 г., 148 стр., мягкий переплет With the growth of the digital era, data is largely available, so knowledge retrieval from those data is done by data mining algorithms. Among various data mining algorithms, finding outliers is crucial as their occurrence degrades system efficiency. The majority of the research was limited to detecting outliers in a single universe with a single... | 43431 тг |