Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Student Placement Probability Prediction. Using Machine Learning
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Choudari Lakshmi,Suneetha Merugula and A Sravani
ISBN: 9786205490617
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 72
Издательство: LAP LAMBERT Academic Publishing
Цена: 27521 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Machine Learning is the science of getting computers to learn and act like humans do, and improve their learning over time in autonomous fashion, by feeding them data and information in the form of observations and real-world interactions. Now a days students placements plays vital role in academic establishments. Admission and name of establishments primarily depends on placements. The students’ employability is a major concern for the institutions offering higher education and a method for early prediction of employability of the students is always desirable to take timely action. The main aim of our project is to analyze previous year’s student’s historical data and predict placement possibilities of current students and aids to increase the placement percentage of the institutions. In our project we are going to predict the chance of the student to select in a particular company based upon the previously placed students. The whole process includes classification and regression algorithms in machine learning.Our main goal is to predict the student placement status using machine learning techniques.
Ключевые слова: Prediction Algorithms, classification, regression, machine learning.